KMS Shanghai Institute of Ceramics,Chinese Academy of Sciences
Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries | |
Li, Wenwen; Sun, Changzhi; Jin, Jun; Li, Yanpei; Chen, Chunhua; Wen, Zhaoyin | |
2019-12-28 | |
Source Publication | JOURNAL OF MATERIALS CHEMISTRY A
![]() |
ISSN | 2050-7488 |
Volume | 7Issue:48Pages:27304 |
Subtype | Article |
Abstract | All-solid-state lithium metal batteries based on polymer electrolytes provide great promise for solving safety and specific energy issues. However, poor ionic conductivity and large interfacial impedance still hold back their development. A strategy of introduction of inorganic nanoparticles was used to improve ionic conductivity and enhance mechanical properties but the current migration mechanism in composite polymer electrolytes (CPEs) is ambiguous. In this work, Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles with molecular brushes (MB-LLZTO) were designed and introduced into poly(ethylene oxide) (PEO) to form a high ionic conductivity composite electrolyte. MB-LLZTO in the polymer matrix plays an ideal role in increasing the ionic conductivity by the Li+ domain-diffusion effect. The CPE with 15 wt% MB-LLZTO exhibits the highest ionic conductivity of 3.11 M10(-4) S cm(-1) at 45 degrees C (the corresponding value of the pristine LLZTO-CPE is 9.16 x 10(-5) S cm(-1)). High-resolution solid-state Li NMR provides experimental evidence for the proposed mechanism in the composite electrolyte that Li+ tends to diffuse in the fast-conduction domains introduced by the brushes of the MB-LLZTO surface. Consequently, the all-solid-state lithium-sulfur battery with the MB-LLZTO-CPE shows a discharge capacity of approximately 1280 mA h g(-1) at low temperature and stable cycling performance (752 mA h g(-1) after 220 cycles). Construction of molecular brushes on the LLZTO surface may be an effective way to unlock more potential solid polymer electrolytes. |
DOI | 10.1039/c9ta10400c |
WOS Keyword | COMPOSITE POLYMER ELECTROLYTES ; ION-CONDUCTING MEMBRANE ; NANOPARTICLES ; ENHANCEMENT |
Language | 英语 |
WOS Research Area | Chemistry ; Energy & Fuels ; Materials Science |
Publisher | ROYAL SOC CHEMISTRY |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.sic.ac.cn/handle/331005/27440 |
Collection | 中国科学院上海硅酸盐研究所 |
Recommended Citation GB/T 7714 | Li, Wenwen,Sun, Changzhi,Jin, Jun,et al. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries[J]. JOURNAL OF MATERIALS CHEMISTRY A,2019,7(48):27304. |
APA | Li, Wenwen,Sun, Changzhi,Jin, Jun,Li, Yanpei,Chen, Chunhua,&Wen, Zhaoyin.(2019).Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries.JOURNAL OF MATERIALS CHEMISTRY A,7(48),27304. |
MLA | Li, Wenwen,et al."Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries".JOURNAL OF MATERIALS CHEMISTRY A 7.48(2019):27304. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment